Recursive ADT (Algebraic Data Types)
Recursive ADT encoding and decoding
Certain shapes of data are difficult to write correct Decoder
/Encoder
instances for,
however much of the complexity can be avoided by leveraging the Defer
typeclass from cats
.
Recursive Decoder
example
It's important to understand the failure modes that are specific to writing a Decoder
for a
recursive data structure, because Defer
only resolves 3 of the 4.
Consider the following ADT:
import io.circe.{Json, Decoder, HCursor}
import io.circe.Decoder.{Result, AccumulatingResult}
import io.circe.syntax._
import cats.syntax.all._
sealed trait Tree[A]
case class Branch[A](left: Tree[A], right: Tree[A]) extends Tree[A]
case class Leaf[A](value: A) extends Tree[A]
First Attempt: StackOverflowError
during Decoder
creation
And these encoder / decoder instances:
implicit def branchDecoder[A: Decoder]: Decoder[Branch[A]] =
Decoder.forProduct2[Branch[A], Tree[A], Tree[A]]("l", "r")(Branch.apply)
implicit def leafDecoder[A: Decoder]: Decoder[Leaf[A]] =
Decoder[A].at("v").map(Leaf(_))
implicit def treeDecoder[A: Decoder]: Decoder[Tree[A]] =
List[Decoder[Tree[A]]](
Decoder[Branch[A]].widen,
Decoder[Leaf[A]].widen
).reduceLeft(_ or _)
val decoder =
try implicitly[Decoder[Tree[Int]]]
catch {
case _: StackOverflowError =>
Decoder.failedWithMessage[Tree[Int]]("Lookup caused StackOverflowError")
}
// decoder: Decoder[Tree[Int]] = io.circe.Decoder$$anon$21@72fc70ee
Json.obj("v" := 1).as[Tree[Int]](decoder)
// res0: Result[Tree[Int]] = Left(
// value = DecodingFailure at : Lookup caused StackOverflowError
// )
This implementation looks quite reasonable, however it will result in a StackOverflowError
at runtime.
This happens because Tree
is generic, and it's Decoder
instances must be generic def
s, producing and
endless loop of calls to treeDecoder
and branchDecoder
.
Second Attempt: Diverging Implicits error
The StackOverflowError
can be converted to a compilation error by adjusting the implicit parameters to be
more granular. This diverging implicits error is more clear about the source of the issue.
implicit def branchDecoder[A](implicit TD: Decoder[Tree[A]]): Decoder[Branch[A]] =
Decoder.forProduct2[Branch[A], Tree[A], Tree[A]]("l", "r")(
Branch.apply
)
implicit def leafDecoder[A: Decoder]: Decoder[Leaf[A]] =
Decoder[A].at("v").map(Leaf(_))
implicit def treeDecoder[A](implicit BD: Decoder[Branch[A]], LD: Decoder[Leaf[A]]): Decoder[Tree[A]] =
List[Decoder[Tree[A]]](
Decoder[Branch[A]].widen,
Decoder[Leaf[A]].widen
).reduce(_ or _)
implicitly[Decoder[Tree[Int]]]
// error: diverging implicit expansion for type io.circe.Decoder[repl.MdocSession.MdocApp.Tree[Int]]
// starting with method branchDecoder
Third Attempt: Undesirable creation of Decoder
instances
Switching to lazily creating the instances needed is a way to get past the diverging implicits issue, however the
cost of this approach is the creation of a new instance of Decoder
each time recursion occurs.
var instanceCounter = 0
// instanceCounter: Int = 0
implicit def branchDecoder[A: Decoder]: Decoder[Branch[A]] = {
instanceCounter += 1
Decoder.instance { c =>
(c.downField("l").as[Tree[A]], c.downField("r").as[Tree[A]]).mapN(Branch.apply)
}
}
implicit def leafDecoder[A: Decoder]: Decoder[Leaf[A]] = {
instanceCounter += 1
Decoder[A].at("v").map(Leaf(_))
}
implicit def treeDecoder[A: Decoder]: Decoder[Tree[A]] = {
instanceCounter += 1
Decoder.instance { c =>
c.as[Branch[A]].orElse(c.as[Leaf[A]])
}
}
Json.obj(
"l" -> Json.obj("v" := 1),
"r" -> Json.obj(
"l" -> Json.obj("v" := 2),
"r" -> Json.obj("v" := 3)
)
).as[Tree[Int]]
// res2: Result[Tree[Int]] = Right(
// value = Branch(
// left = Leaf(value = 1),
// right = Branch(left = Leaf(value = 2), right = Leaf(value = 3))
// )
// )
instanceCounter
// res3: Int = 19
Fourth Attempt: A workable solution
The solution to the previous issues is to generate the instances once, and cache them.
var instanceCounter = 0
// instanceCounter: Int = 0
implicit def branchDecoder[A](implicit DTA: Decoder[Tree[A]]): Decoder[Branch[A]] = {
instanceCounter += 1
Decoder.forProduct2[Branch[A], Tree[A], Tree[A]]("l", "r")(Branch.apply)
}
implicit def leafDecoder[A: Decoder]: Decoder[Leaf[A]] = {
instanceCounter += 1
Decoder[A].at("v").map(Leaf(_))
}
implicit def treeDecoder[A: Decoder]: Decoder[Tree[A]] = {
instanceCounter += 1
new Decoder[Tree[A]] {
private implicit val self: Decoder[Tree[A]] = this
private val delegate =
List[Decoder[Tree[A]]](
Decoder[Branch[A]].widen,
Decoder[Leaf[A]].widen
).reduce(_ or _)
override def apply(c: HCursor): Result[Tree[A]] = delegate(c)
}
}
Json.obj(
"l" -> Json.obj("v" := 1),
"r" -> Json.obj(
"l" -> Json.obj("v" := 2),
"r" -> Json.obj("v" := 3)
)
).as[Tree[Int]]
// res4: Result[Tree[Int]] = Right(
// value = Branch(
// left = Leaf(value = 1),
// right = Branch(left = Leaf(value = 2), right = Leaf(value = 3))
// )
// )
instanceCounter
// res5: Int = 3
Note that, because delegate
is a fixed instance, it is not necessary to explicitly cache
branchDecoder
or leafDecoder
.
This implementation solves most of the issues with a recursive decoder, at the cost of
being annoying to write, and easy to break by omitting private implicit val self: Decoder[Tree[A]] = this
,
which will cause this decoder to produce a StackOverflowError
at runtime, but the compiler
won't complain about removing it.
Fifth Attempt: A more elegant solution
The Defer
typeclass allows us to write Decoder
s and Encoders
that have access to their eventual
instance, enabling us to write an equivalent instances in a more natural and less fragile fashion.
This can be done directly, using Defer[Decoder].fix
, or the recursive
helper provided on the Decoder
and Encoder
companion objects.
The Decoder
instances for Tree
using Decoder.recursive
would look like this:
var instanceCounter = 0
// instanceCounter: Int = 0
implicit def branchDecoder[A](implicit DTA: Decoder[Tree[A]]): Decoder[Branch[A]] = {
instanceCounter += 1
Decoder.forProduct2[Branch[A], Tree[A], Tree[A]]("l", "r")(Branch.apply)
}
implicit def leafDecoder[A: Decoder]: Decoder[Leaf[A]] = {
instanceCounter += 1
Decoder[A].at("v").map(Leaf(_))
}
implicit def treeDecoder[A: Decoder]: Decoder[Tree[A]] = {
instanceCounter += 1
Decoder.recursive { implicit recurse =>
List[Decoder[Tree[A]]](
Decoder[Branch[A]].widen,
Decoder[Leaf[A]].widen
).reduce(_ or _)
}
}
Json.obj(
"l" -> Json.obj("v" := 1),
"r" -> Json.obj(
"l" -> Json.obj("v" := 2),
"r" -> Json.obj("v" := 3)
)
).as[Tree[Int]]
// res6: Result[Tree[Int]] = Right(
// value = Branch(
// left = Leaf(value = 1),
// right = Branch(left = Leaf(value = 2), right = Leaf(value = 3))
// )
// )
instanceCounter
// res7: Int = 3
Note that, in the same manner that caching delegate
implicitly caches the branch and leaf decoders,
because treeDecoder
provides a fixed instance, it is not necessary to use Decoder.recursive
to write
branchDecoder
or leafDecoder
Limitations
While both the fourth and fifth attempts avoid the issues of the previous attempts, they are not
perfect. Because the recursive calls are not tail recursive, they are not fully stack safe. This
is generally not an issue for data structures that have a depth of at most log(size)
, linear
structures (like a linked list) could run into trouble.
var instanceCounter = 0
// instanceCounter: Int = 0
implicit def branchDecoder[A](implicit DTA: Decoder[Tree[A]]): Decoder[Branch[A]] = {
instanceCounter += 1
Decoder.forProduct2[Branch[A], Tree[A], Tree[A]]("l", "r")(Branch.apply)
}
implicit def leafDecoder[A: Decoder]: Decoder[Leaf[A]] = {
instanceCounter += 1
Decoder[A].at("v").map(Leaf(_))
}
implicit def treeDecoder[A: Decoder]: Decoder[Tree[A]] = {
instanceCounter += 1
Decoder.recursive { implicit recurse =>
List[Decoder[Tree[A]]](
Decoder[Branch[A]].widen,
Decoder[Leaf[A]].widen
).reduce(_ or _)
}
}
val decoder = Decoder[Tree[Int]]
// decoder: Decoder[Tree[Int]] = io.circe.Decoder$$anon$9@228f3165
try
List
.range(0, 10000)
.map(i => Json.obj("v" := i))
.reduceLeft { (a, b) =>
Json.obj("l" -> a, "r" -> b)
}
.as[Tree[Int]](decoder)
catch {
case _: StackOverflowError => Leaf(-1).asRight
}
// res8: Result[Tree[Int]] = Right(value = Leaf(value = -1))
instanceCounter
// res9: Int = 3
Note that despite the successful creation of a Decoder[Tree[Int]]
instance, and the number of Decoder
instances remaining constant at 3, the size of the unbalanced Tree[Int]
represented in the JSON still
caused a StackOverflowError
.